The Chemistry of Tetrafluoroallene: One-pot Synthesis of Trifluoromethylindolizines from 1,3-Diiodo-1,1,3,3-tetrafluoropropane by 1,3-Dipolar Cycloaddition[†]

XIAO, Ji-Chang(肖吉昌) CHEN, Qing-Yun*(陈庆云)

Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China

Heating a mixture of 1, 3-diiodo-1, 1, 3, 3-tetrafluoropropane (2), K_2CO_3 , pyridinium bromides (3) in CH_3CN at 65 °C for 10 h gives the corresponding trifluoromethylindolizines.

Keywords tetrafluoroallene, trifluoromethylindolizine, 1,3-diio-do-1,1,3,3-tetrafluoropropane, 1,3-dipolar cycloaddition, one-pot synthesis

Introduction

Fluoroallene and 1,1-difluoroallene, as allene derivatives, are useful compounds which can undergo a quite variety of reactions, especially e.g. cycloadditions with alkenes, dienes, and diazo compounds.4 However, their analog, tetrafluoroallene (1) was less investigated. Near 40 years ago, Banks et al.5 first carried out the ionic reactions of 1 with hydrogen halides, HX (X = Br, Cl, F) and fluoride ion to give $CF_2XCH = CF_2$ and CF₃CH = CF₂ respectively. 1 readily dimerized to perfluoro (1, 2-dimethylene cyclobutane) and homopolymerized to $[CF_2C(=CF_2)]_n$. 5,6 The reaction of tetrafluoroallene dimmer with trifluoronitrosomethane was also described.⁵ The cycloaddition of 1 to CF_3NO^7 and $CF_3C \equiv$ CCF_3^8 gave the corresponding (2+2) adducts. Some interesting heterocyclic compounds were obtained through 1, 3-dipolar cycloaddition of 1 to N-phenylsydnone, 9 phenylazide, nitrone, diazophenylmethane and diazodiphenylmethane. 10 Apparently, the chemistry of 1 has not been significantly developed due to its difficult preparation.

Tetrafluoroallene, 1, was previously synthesized by three-step procedure starting from CF_2Br_2 shown as follows⁵ (Scheme 1).

We improved the yield of 1 by using 1,3-diiodo-1,1, 3,3-tetrafluoropropane (ICF₂CH₂CF₂I, 2) as its precursor which can be smoothly synthesized by the reaction of CF_2I_2 with $CF_2 = CH_2$ in the presence of Pb (OAc)₄. ¹¹ Elimina -

Scheme 1

$$CF_2Br_2 + CF_2 = CF_2$$
 $\xrightarrow{(PhCO)_2O_2}$ $\xrightarrow{BrCF_2CH_2CF_2Br}$ (51%) \xrightarrow{KOH} \xrightarrow{KOH} $\xrightarrow{BrCF_2CH} = CF_2$ (89%)

tion of hydrogen iodide from 2 with K₂CO₃ in CH₃CN affords 1 in good yield. ¹¹ Thus our new synthetic method for 1 makes it possible to further expand the investigation of 1.

On the other hand, we recently were interested in synthesizing fluorinated heterocyclic compounds from fluorinated olefins or their equivalents. For example, fluorinated indolizines could be prepared through 1, 3-dipolar cycloaddition of fluoroalkenes, ^{12a} CF₃CH₂Cl (HFC-133a) or CF₃CH₂F (HFC-134a) to N-ylides. ^{12b} Because 1 is particularly sensitive to nucleophilic attack, ¹³ we envisioned that 1 would undergo the same reaction to give the indolizine derivatives. Herein, the results reported.

Results and discussion

Direct treatment of 1 with reactant under normal conditions is not convenient because 1 is a gas (b.p. -37.6 °C). Thus we tried to carry out the 1,3-dipolar cycloaddition of N-phenacylpyridinium bromide (3a) to 2 in CH₃CN in the presence of K₂CO₃, provided 1 was generated in situ. The desired indolizine 4a was indeed obtained in 61% yield. The control reaction, i.e., the reaction from gas 1 instead of 2, gave a comparable yield (68%) of the same product although the purification seemed somewhat easy (Scheme 2). Similarly, the other indolizine derivatives were synthesized by this one-pot pro-

Received January 10, 2003; revised and accepted March 21, 2003.

Project supported by the National Natural Science Foundation of China (Nos. 20272076 and D20032010).

^{*} E-mail: chenqy@mail.sioc.ac.cn

[†]Dedicated to Professor ZHOU Wei-Shan on the occasion of his 80th birthday.

cedure (Scheme 3). The structures of the products (4a-4f) were established by their spectra data (MS, NMR, IR) and elemental analyses. The spectral data of 4a and **4b** are in consistent with the reports in literature. ¹⁴

Scheme 2

i) K₂CO₃, CH₃CN, 65 °C

Scheme 3

a:
$$R^1 = H$$
; $R^2 = H$; $R^3 = Ph$

b:
$$R^1 = H$$
; $R^2 = H$; $R^3 = OC_2H_5$

$$p^1 - CH \cdot p^2 - H \cdot p^3 - 1$$

e:
$$R^1 = CH_3$$
; $R^2 = H$; $R^3 = Ph$ **d**: $R^1 = CH_3$; $R^2 = H$; $R^3 = OC_2H_5$

e:
$$R^1 = H$$
; $R^2 = Br$; $R^3 = Ph$

f:
$$R^1 = H$$
; $R^2 = Br$; $R^3 = OC_2H_5$

In the case of 3-substituted pyridinium N-ylide, it is possible to obtain either 6- or 8-substituted indolizines (Scheme 4).

Scheme 4

path b path b path b
$$R^2$$
 path a R^2 path a R^2 path b R^3 R^2 path b R^3 R^3

But in fact when 3-methyl-pyrimidinium bromide (5) was used, the 6-methyl indolizine (6) was only isolated. This was in contrast to the results when 3-bromopyridinium bromide (3e, 3f) was employed, which solely gave 8-bromo-indolizine derivatives (4e, 4f) (Scheme 5). ¹H NMR spectrum of compound 6 showed resonance at δ 9.19 (s, 1H, C⁵-H), which is the characteristic signal of this kind of structure. The two doublet signals at δ 7.51 (d, ${}^3J_{\rm HH}$ = 9 Hz, 1H) and 7.27 (d, ${}^{3}J_{HH}$ = 9 Hz, 1H) were assigned to C8-H and C7-H, respectively. But in the case of 8-bromoindolizine 4f, the doublet signal at δ 9.69 (d, $^{3}J_{\rm HH} = 1.8$ Hz, 1H, ArH) was assigned to C⁵-H; the doublet signal at δ 7.55 and the quartet signal at δ 7.38 to C^7 -H and C^6 -H, respectively.

Scheme 5

N-Phenacylpyridazinium bromide (7) reacted also in a similar way with ICF₂CH₂CF₂I (2) to give the corresponding pyrrolo[1, 2-b] pyridazine derivatives (8) (Scheme 6).

In the case of isoguinolinium N-vlides (9a, 9b) (Scheme 7), cycloaddition took place at its 1-position, which was characterized by its ¹H NMR spectra data. Taking 10b as an example, the doublet signals at δ 9.41 (d, $^{3}J_{HH} = 7.6 \text{ Hz}, 1\text{H}) \text{ and } 7.55 \text{ (d, } ^{3}J_{HH} = 7.5 \text{ Hz}, 1\text{H})$ were assigned to C⁵-H and C⁶-H, respectively.

A possible mechanism for this reaction is shown in Scheme 8. 1,3-Dipolar cycloaddition of N-ylide generated from N-phenacylpyridinium bromide after HBr elimination

Scheme 6

Scheme 7

a: R = Ph; **b**: $R = OC_2H_5$

Scheme 8

to 1 produced in situ from 2 in the presence of K₂CO₃ takes place first. The resultant five-member ring intermediate then undergoes fluoride ion migration. After aromatization, the desired trifluoromethylindolizine derivatives are obtained. The similar anionotropic rearrangement and aromatization have been reported previously by Taylor. 9,10

The yields of all these cycloadducts are summarized in Table 1.

In summary, a convenient one-pot method for synthesizing trifluoromethylated indolizines from tetrafluoroallene precursor (ICF₂CH₂CF₂I, 2) through 1,3-dipolar cycloaddition is described.

Experimental

Melting points were uncorrected. ¹H NMR and ¹⁹F NMR spectra were recorded on a Varian-360L instrument or Bruker AM-300 spectrometer for solution of CDCl₃ or CD₃COCD₃ with TMS and CFCl₃ as the internal and external standards respectively, and the upfields are negative. IR spectra were obtained with a Perkin Elmer 983G spectro-photometer on KBr disks. Lower resolution mass spectra (LRMS) and higher resolution mass spectra (HRMS) were obtained on a HP-5989a and Finnigan MAT-8430 instruments, respectively. Organic solvents were dried by standard methods when necessary. Commercially obtained reagents were used without further purification. Flash column chromatography was carried out using 300—400 mesh silica gel.

General procedure A; one-pot method

A 6 mL pyrex tube was placed $ICF_2CH_2CF_2I$ (2) (5 mmol, 1.839 g), pyridinium salt (3 mmol) and anhydrous acetonitrile (3 mL). After addition of K_2CO_3 (10 mmol, 1.382 g), the tube was immediately sealed and then heated in an oil bath at 65 °C for 10 h. The tube was cooled to -50 °C for 5 min, opened and then warmed again to room temperature. The mixture was poured into H_2O (40 mL) and extracted with Et_2O (3 × 15 mL). Then the combined organic layer was washed with brine (3 × 20 mL). The organic layer was dried over anhydrous sodium sulfate. The solvent was removed under reduced pressure and the crude product was purified by flash column chromatography to give the product.

General procedure B: two-step method

Tetrafluoroallene (1) was prepared according to literature. ¹¹ Into a 6 mL pyrex tube containing pyridinium salt (3 mmol), $K_2CO_3(4 \text{ mmol})$, 0.553 g), anhydrous CH_3CN (3 mL) was condensed $CF_2 = C = CF_2(0.448 \text{ g 4 mmol})$. The tube was sealed and allowed to warm to room temperature and then heated in an oil bath at 65 °C for 8 h. The subsequent operation was the same as procedure A.

Entry	Substrate	material)	of 1,3-dipolar cycloadducts (based	on dipoles	
1	N+ Br-CH ₂ COPh	3a	Product CF ₃ F COPh	4a	Yield (%) 61 ^a (68 ^b)
2	Br CH ₂ CO ₂ C ₂ H ₅	3b	CF_3 F $CO_2C_2H_5$	4b	714
3	H ₃ C H + Br - CH ₂ COPh	3c	CF ₃ N F COPh	4c	75°
4	H ₃ C H ₅ Br CH ₂ CO ₂ C ₂ H ₅	3d	H_3C CF_3 F $CO_2C_2H_5$	4d	30°
5	Br + Br CH ₂ COPh	3e	Br CF ₃ F COPh	4e	81 ^{a,c}
6	Br + Br CH ₂ CO ₂ C ₂ H ₅	3f	Br CF ₃ F CO ₂ C ₂ H ₅	4f	32°(41b)
7	CH ₃ N Br CH ₂ CO ₂ C ₂ H ₅	5	CH_3 N $CO_2C_2H_5$ F_3C	6	55°(63°)
8	N-N- CH ₂ COPh	7	CF ₃ CP _h COPh	8	20°
9	N Br CH ₂ COPh	9a	$F_{3}C$ F $COPh$	10a	70°
10	N+Br-CH ₂ CO ₂ C ₂ H ₅	9b	F_3C F $CO_2C_2H_5$	10b	$80^a(87^b)$

^a One-pot yields; ^b two-step yields; ^c Et₃N was used as the base.

(2-Fluoro-1-trifluoromethyl-indolizin-3-yl)-phenyl-methanone (4a) Colorless solid; m.p. 99—101 °C;

¹H NMR (CDCl₃) δ : 9.80 (d, J = 6.9 Hz, 1H, ArH),
7.08—7.78 (m, 8H, ArH);

¹F NMR (CD₃COCD₃) δ :
-54.7 (d, J = 11.1 Hz, 3F, CF₃), -134.3 (q, J = 11.0 Hz, 1F, CF); IR (KBr) ν : 3064, 1616, 1554,
1410, 1256, 1226, 1108, 958 cm⁻¹; MS m/z (%):
307 (M⁺, 100.00), 288 (35.5), 238 (16.7), 230 (83.3), 105 (76.37), 77 (64.60). Anal. calcd for
C₁₆H₉F₄NO: C 66.55, H 2.95, N 4.56, F 24.73; found C 62.90, H 3.32, N 4.62, F 24.46.

2-Fluoro-1-trifluoromethyl-indolizine-3-carboxylic acid ethyl ester (**4b**) Colorless solid; m.p. 101—103 °C; ¹H NMR (CD₃COCD₃) δ : 9.53 (d, J = 6.9 Hz, 1H, ArH), 7.24—7.80 (m, 3H, ArH), 4.44 (q, J = 7.1 Hz, 2H, CH₂), 1.41 (t, J = 7.1 Hz, 3H, CH₃); ¹⁹ F NMR (CD₃COCD₃) δ : -55.60 (d, J = 11.3 Hz, 3F, CF₃), -141.34 (q, J = 9.9 Hz, 1F, CF); IR (KBr) ν : 3123, 3001, 1701, 1643, 1558, 1486, 1435, 1261, 1214 cm⁻¹; MS m/z (%): 275 (M⁺, 86.63), 256 (16.15), 230 (73.22), 203 (100.00), 184 (27.96).

(2-Fluoro-7-methyl-1-trifluoromethyl-indolizin-3-yl)-phenyl-methanone (4c) Colorless solid; m.p. 116—118 °C; ¹H NMR (CD₃COCD₃) δ : 9.66 (d, J = 7.2 Hz, 1H, ArH), 7.19—7.82 (m, 7H, ArH), 2.54 (s, 3H, CH₃); ¹⁹F NMR (CD₃COCD₃) δ : – 55.66 (d, J = 7.7 Hz, 3F, CF₃), – 137.88 (q, J = 10.5 Hz, 1F, CF); IR (KBr) ν : 3068, 1652, 1615, 1558, 1471, 1408, 1257, 1231, 1110 cm⁻¹; MS m/z (%): 321 (M⁺, 3.85), 262 (100.00), 183 (91.69), 105 (13.15); HRMS (EI) calcd for C₁₇H₁₁F₄NO 321.07768, found 321.07545.

2-Fluoro-7-methyl-1-trifluoromethyl-indolizine-3-carboxylic acid ethyl ester (4d) Colorless solid; m.p. 73—75 °C; ¹H NMR (CDCl₃) δ : 9.36 (d, J = 7.4 Hz, 1H, ArH), 7.41 (s, 1H, ArH), 6.83 (d, J = 7.4 Hz, 1H, ArH), 4.41 (q, J = 6.9 Hz, 2H, CH₂), 2.43 (s, 3H, CH₃), 1.41 (t, J = 7.1 Hz, 3H, CH₃); ¹9F NMR (CDCl₃) δ : - 54.98 (d, J = 15.7 Hz, 3F, CF₃), -138.34 (q, J = 16.6 Hz, 1F, CF); IR (KBr) ν : 3142, 3001, 2926, 1697, 1651, 1562, 1487, 1471, 1426, 1267, 1220, 1108, 1029, 800 cm⁻¹; MS m/z (%): 289 (M⁺, 63.85), 270 (10.52), 217 (100), 198 (12.49); HRMS (EI) calcd for C₁₃H₁₁F₄NO₂ 289.07259, found 289.07325.

(8-Bromo-2-fluoro-1-trifluoromethyl-indolizin-3-yl)-phenyl-methanone (4e) Pale yellow solid; m.p. 130—132 °C; ¹H NMR (CD₃COCD₃) δ : 9.80 (d, J = 6.9 Hz, 1H, ArH), 7.23—7.97 (m, 7H, ArH); ¹⁹ F NMR (CD₃COCD₃) δ : - 44.90 (d, J = 7.6 Hz, 3F, CF₃), - 129.73 (q, J = 10.5 Hz, 1F, CF); IR (KBr) ν : 3126, 3062, 1614, 1601, 1540, 1419, 1395, 1257, 1120, 1109 cm⁻¹; MS m/z (%): 385 (M⁺, 46.48), 387 (46.89), 307 (25.50), 105 (100.00), 77 (81.75); HRMS (EI) calcd for C₁₆H₈BrF₄NO 384.97254, found 384.97359.

8-Bromo-2-fluoro-1-trifluoromethyl-indolizine-3-car-

boxylic acid ethyl ester (4f) Colorless solid; m.p. 90—92 °C; ¹H NMR (CDCl₃) δ : 9.69 (d, J = 1.8 Hz, 1H, ArH), 7.55 (d, J = 10.3 Hz, 1H, ArH), 7.38 (dd, J = 1.7, 10.4 Hz, 1H, ArH), 4.43 (q, 2H, J = 7.2 Hz, CH₂), 1.42 (t, J = 7.2 Hz, 3H, CH₃); ¹⁹F NMR (CDCl₃) δ : -54.92 (d, J = 10.8 Hz, 3F, CF₃), -137.20 (q, J = 10.8 Hz, 1F, CF); IR (KBr) ν : 3134, 2987, 1689, 1552, 1472, 1428, 1253, 1210, 1164, 954 cm⁻¹; MS m/z (%): 353 (M⁺, 99.85), 355 (97.29), 325 (67.67), 308 (56.28), 281 (100.00), 201 (34.51); HRMS (EI) calcd for C₁₂H₈BrF₄NO₂ 352.96745, found 352.96571.

2-Fluoro-6-methyl-1-trifluoromethyl-indolizine-3-carboxylic acid ethyl ester (6) Pale yellow solid; m.p. $106-108 \,^{\circ}\mathrm{C}$; $^{1}\mathrm{H}$ NMR (CD₃COCD₃) δ : 9.19 (s, 1H, ArH), 7.51 (d, J=9 Hz, 1H, ArH), 7.27 (d, J=9 Hz, 1H, ArH), 4.42 (q, J=7.2 Hz, 2H, CH₂), 2.43 (s, 3H, CH₃), 1.40 (t, J=7.2 Hz, 3H, CH₃); $^{19}\mathrm{F}$ NMR (CD₃COCD₃) δ : -55.57 (d, J=6.1 Hz, 3F, CF₃), -141.76 (q, J=10.6 Hz, 1F, CF); IR (KBr) ν : 3127, 2997, 1698, 1629, 1555, 1432, 1247, 1226, 1147, 1096, 951 cm⁻¹; MS m/z (%): 289 (M⁺, 73), 270 (8.70), 261 (68.99), 244 (55.70), 217 (100.00), 198 (12.30); HRMS (EI) calcd for C₁₃H₁₁F₄NO₂ 289.07259, found 289.07262.

(6-Fluoro-5-trifluoromethyl-pyrrolo [1,2-b] pyridazin-7-yl)-phenyl-methanone (8) Viscous oil; 1H NMR (CD₃COCD₃) δ : 7.38—8.54 (m, ArH); 19 F NMR (CD₃COCD₃) δ : -55.28 (d, J = 8.8 Hz, 3F, CF₃), -146.98 (q, J = 8.7 Hz, 1F, CF); IR (film) ν : 3067, 1651, 1629, 1548, 1467, 1417, 1251, 1105, 943 cm⁻¹; MS m/z (%): 308 (M⁺, 100), 289 (16.25), 279 (50.42), 239 (3.64), 231 (57.84), 105 (63.81), 77 (90.06); HRMS (EI) calcd for $C_{15}H_8F_4N_2O$ 308.05728, found 308.05334.

(2-Fluoro-1-trifluoromethyl-pyrrolo [2,1-a]-isoquino-lin-3-yl)-phenyl-methanone (10a) Colorless solid; m.p. 182—184 °C; ¹H NMR (CD₃COCD₃) δ : 9.36 (d, J = 7.6 Hz, 1H, ArH), 8.45 (d, J = 9.0 Hz, 1H, ArH), 7.55—8.05 (m, 9H, ArH); ¹⁹ F NMR (CD₃COCD₃) δ : -54.72 (d, J = 22.0 Hz, 3F, CF₃), -139.25 (q, J = 23.3 Hz, 1F, CF); IR (KBr) ν : 3147, 1616, 1557, 1457, 1420, 1386, 1279, 1207, 1106 cm⁻¹; MS m/z (%): 357 (M⁺, 100.00), 329 (9.32), 280 (30.23), 252 (18.44), 105 (29.39), 77 (37.49). Anal. calcd for C₂₀H₁₁F₄NO: C 67.23, H 3.10, N 3.92, F 21.27; found C 66.92, H 3.28, N 3.74, F 21.07.

2-Fluoro-1-trifluoromethyl-pyrrolo [2,1-a]-isoquinolin-3-carboxylic acid ethyl ester (10b) Colorless solid; m.p. 156—158 °C; ¹H NMR (CD₃COCD₃) δ : 9.41 (d, J = 7.6 Hz, 1H, ArH), 7.76—8.42 (m, 4H, ArH), 7.55 (d, J = 7.5 Hz, 1H, ArH), 4.45 (q, J = 7.2 Hz, 2H, CH₂), 1.41 (t, J = 7.2 Hz, 3H, CH₃); ¹9F NMR (CD₃COCD₃) δ : -54.74 (d, J = 21.2 Hz, 3F, CF₃), -141.41 (q, J = 23.2 Hz, 1F, CF); IR (KBr) ν :

3138, 2921, 1701, 1644, 1568, 1524, 1458, 1259, 1201, 1111, 1068, 798 cm⁻¹; MS m/z (%): 325 (M⁺, 59.16), 297 (42.50), 280 (43.37), 253 (76.41), 69 (36.16), 43 (100); HRMS (EI) calcd for $C_{16}H_{11}F_4NO_2$ 325.07259, found 325.07363.

References

- (a) Dolbier, W. R., Jr.; Burkholder, C. R. J. Org. Chem. 1984, 49, 2381.
 - (b) Dolbier, W. R., Jr.; Wicks, G. E. J. Am. Chem. Soc. 1985, 107, 3626.
 - (c) Dolbier, W. R., Jr.; Seabury, M. J. Tetrahedron Lett. 1987, 28, 1491.
 - (d) Dolbier, W. R., Jr.; Seabury, M. J. J. Am. Chem. Soc. 1987, 109, 4393.
 - (e) Dolbier, W. R., Jr.; Weaver, S. L. J. Org. Chem. 1990, 55, 711.
 - (f) Dolbier, W. R., Jr. Acc. Chem. Res. 1991, 24, 63.
- 2 (a) Dolbier, W. R., Jr.; Piedrahita, C. A.; Houk, K. N.; Strozier, R. W.; Gandour, R. W. Tetrahedron Lett. 1978, 2231.
 - (b) Knoth, W. H.; Coffman, D. D. J. Am. Chem. Soc. 1960, 82, 3872.
 - (c) Shtarov, A. B.; Krusic, P. J.; Smart, B. E.; Dolbier, W. R., Jr. J. Am. Chem. Soc. 2001, 123, 9956.
- 3 (a) Dolbier, W. R., Jr.; Burkholder, C. R. Isr. J. Chem. 1985, 26, 115.
 - (b) Dolbier, W. R., Jr.; Wicks, G. E.; Burkholder, C.

- R.; Palenik, G. J.; Gawron, M. J. Am. Chem. Soc. 1985, 107, 7183.
- (c) Dolbier, W. R., Jr.; Wicks, G. E.; Burkholder, C. R. J. Org. Chem. 1987, 52, 2196.
- (a) Dolbier, W. R., Jr.; Burkholder, C. R.; Winchester,
 W. R. J. Org. Chem. 1984, 49, 1518.
 - (b) Dolbier, W. R., Jr.; Burkholder, C. R. J. Am. Chem. Soc. 1984, 106, 2139.
- 5 Banks, R. E.; Haszeldine, R. N.; Taylor, D. R. J. Chem. Soc. 1965, 978.
- 6 Jacobs, T. L.; Bauer, R. S. J. Am. Chem. Soc. 1959, 81, 606.
- 7 (a) Banks, R. E.; Haszeldine, R. N.; Taylor, D. R. J. Chem. Soc. 1965, 5602.
 - (b) Banks, R. E.; Haszeldine, R. N.; Myerscough, T. J. Chem. Soc., Perkin Trans. 1 1972, 2336.
- 8 Banks, R. E.; Deem, W. R.; Haszeldine, R. N.; Taylor, D. R. J. Chem. Soc. (C) 1966, 2051.
- 9 Blackwell, G. B.; Haszelding, R. N.; Taylor, D. R. J. Chem. Soc., Perkin Trans. 1 1982, (9), 2207.
- 10 Blackwell, G. B.; Haszelding, R. N.; Taylor, D. R. J. Chem. Soc., Perkin Trans. 1 1983, (1), 1.
- 11 Li, A.-R.; Chen, Q.-R. Synthesis 1997, 12, 1481.
- 12 (a) Wu, K.; Chen, Q.-Y. Synthesis 2003, 35.
 - (b) Wu, K.; Chen, Q.-Y. J. Fluorine Chem., in press.
- Banks, R. E.; Braithwaite, A.; Haszeldine, R. N.; Taylor,
 D. R. J. Chem. Soc. (C) 1969, 454.
- 14 Banks, R. E.; Khaffaff, S. N. J. Fluorine Chem. 1991, 51, 407.

(E0301101 PAN, B. F.; DONG, L. J.)